
Algorithms & Data Structure I

Syrian Private University

Instructor: Dr. Mouhib Alnoukari

Stacks

3

Stacks

• A stack is an ordered collection of
homogeneous data element where the
insertion and deletion operations take place at
one end only.

• A stack is a last in, first out (LIFO) data
structure

– Items are removed from a stack in the reverse
order from the way they were inserted

Abstract Stack

An Abstract Stack is an abstract data type
which emphasizes specific operations:
– Uses a explicit linear ordering

– Insertions and removals are performed
individually

– Inserted objects are pushed onto the stack

– The top of the stack is the most recently object
pushed onto the stack

– When an object is popped from the stack, the
current top is erased

Abstract Stack

Also called a last-in–first-out (LIFO) behaviour
– Graphically, we may view these operations as follows:

There are two exceptions associated with abstract
stacks:
– It is an undefined operation to call either pop or top on an

empty stack

Applications

Numerous applications:
– Parsing code:

• Matching parenthesis

• XML (e.g., XHTML)

– Tracking function calls

– Dealing with undo/redo operations

– Reverse-Polish calculators

The stack is a very simple data structure
– Given any problem, if it is possible to use a stack,

this significantly simplifies the solution.

Stack: Applications

Problem solving:
– Solving one problem may lead to subsequent

problems.

– These problems may result in further problems.

– As problems are solved, your focus shifts back to
the problem which lead to the solved problem.

Notice that function calls behave similarly:
– A function is a collection of code which solves a

problem.

Implementations

We will look at two implementations of stacks:

The optimal asymptotic run time of any algorithm
is Q(1):
– The run time of the algorithm is independent of the

number of objects being stored in the container

– We will always attempt to achieve this lower bound

We will look at:
– One-ended arrays

– Singly linked lists

9

Array implementation of stacks

• First, we have to allocate a memory block of sufficient
size to accommodate the full capacity of the Stack.

• To implement a stack, items are inserted and removed
at the same end (called the top)

• Efficient array implementation requires that the top of
the stack be towards the center of the array, not fixed
at one end

• To use an array to implement a stack, you need both
the array itself and an integer
– The integer tells you either:

• Which location is currently the top of the stack, or
• How many elements are in the stack

10

Pushing and popping

• If the bottom of the stack is at location 0, then an empty
stack is represented by top = -1 or count = 0

• To add (push) an element, either:
– Increment top and store the element in stk[top], or
– Store the element in stk[count] and increment count

• To remove (pop) an element, either:
– Get the element from stk[top] and decrement top, or
– Decrement count and get the element in stk[count]

top = 3 or count = 4

0 1 2 3 4 5 6 7 8 9

17 23 97 44stk:

11

After popping

• When you pop an element, do you just leave the “deleted”
element sitting in the array?

• The surprising answer is, “it depends”
– If this is an array of primitives, or if you are programming in C or C++, then

doing anything more is just a waste of time

– If you are programming in Java, and the array contains objects, you should
set the “deleted” array element to null

– Why? To allow it to be garbage collected!

top = 2 or count = 3

0 1 2 3 4 5 6 7 8 9

17 23 97 44stk:

12

Sharing space

• Of course, the bottom of the stack could be at the other end.

top = 6 or count = 4

17239744

0 1 2 3 4 5 6 7 8 9

stk:

• Sometimes this is done to allow two stacks to share the same
storage area.

topStk2 = 6

1723974449 57 3

0 1 2 3 4 5 6 7 8 9

stks:

topStk1 = 2

Stack Operations Implementation

Stack Operations Implementation

Stack Operations Implementation

Push (S, 17)
Push (S, 3)

Pop (S)

Array Implementation

For one-ended arrays, all operations at the

back are Q(1)

Front/1st Back/nth

Find Q(1) Q(1)

Insert Q(n) Q(1)

Erase Q(n) Q(1)

17

Error checking

• There are two stack errors that can occur:
– Underflow: trying to pop (or peek at) an empty stack.

– Overflow: trying to push onto an already full stack.

• For underflow, you should throw an exception
– If you don’t catch it yourself, Java will throw an

ArrayIndexOutOfBounds exception.

– You could create your own, more informative exception.

• For overflow, you could do the same things
– Or, you could check for the problem, and copy everything

into a new, larger array.

Linked-List Implementation

Operations at the front of a singly linked list are all
Q(1)

The desired behavior of an Abstract Stack may be
reproduced by performing all operations at the front.

Front/1st Back/nth

Find Q(1) Q(1)

Insert Q(1) Q(1)

Erase Q(1) Q(n)

19

Linked-list implementation of stacks

• Since all the action happens at the top of a stack, a singly-
linked list (SLL) is a fine way to implement it.

• The header of the list points to the top of the stack.

44 97 23 17

myStack:

• Pushing is inserting an element at the front of the list.

• Popping is removing an element from the front of the list.

20

Linked-list implementation details

• With a linked-list representation, overflow will
not happen (unless you exhaust memory,
which is another kind of problem)

• Underflow can happen, and should be handled
the same way as for an array implementation

• When a node is popped from a list, and the
node references an object, the reference (the
pointer in the node) does not need to be set to
null

– Unlike an array implementation, it really is
removed--you can no longer get to it from the
linked list

– Hence, garbage collection can occur as appropriate

Function Calls

– you write a function to solve a problem.

– the function may require sub-problems to be

solved, hence, it may call another function.

– once a function is finished, it returns to the

function which called it.

Function Calls

You will notice that when a function

returns, execution and the return value is

passed back to the last function which was

called.

Today’s CPUs have hardware specifically

designed to facilitate function calling.

Reverse-Polish Notation

Normally, mathematics is written using what
we call in-fix notation:

(3 + 4) × 5 – 6

The operator is placed between to operands

One weakness: parentheses are required
(3 + 4) × 5 – 6 = 29

3 + 4 × 5 – 6 = 17

3 + 4 × (5 – 6) = –1

(3 + 4) × (5 – 6) = –7

Reverse-Polish Notation

Alternatively, we can place the operands first, followed
by the operator:

(3 + 4) × 5 – 6

3 4 + 5 × 6 –

Parsing reads left-to-right and performs any operation
on the last two operands:

3 4 + 5 × 6 –

7 5 × 6 –

35 6 –

29

Reverse-Polish Notation

Other examples:

3 4 5 × + 6 –

3 20 + 6 –

23 6 –

17

3 4 5 6 – × +

3 4 –1 × +

3 –4 +

–1

Reverse-Polish Notation

Benefits:

– No ambiguity and no brackets are required.

– It is the same process used by a computer to

perform computations:

• operands must be loaded into registers before

operations can be performed on them.

– Reverse-Polish can be processed using

stacks.

Reverse-Polish Notation

The easiest way to parse reverse-Polish

notation is to use an operand stack:

– operands are processed by pushing them

onto the stack.

– when processing an operator:

• pop the last two items off the operand stack,

• perform the operation, and

• push the result back onto the stack

Reverse-Polish Notation

Evaluate the following reverse-Polish

expression using a stack:

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

Reverse-Polish Notation

Push 1 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

1

Reverse-Polish Notation

Push 1 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

2

1

Reverse-Polish Notation

Push 3 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

3

2

1

Reverse-Polish Notation

Pop 3 and 2 and push 2 + 3 = 5

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

5

1

Reverse-Polish Notation

Push 4 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

4

5

1

Reverse-Polish Notation

Push 5 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

5

4

5

1

Reverse-Polish Notation

Push 6 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

6

5

4

5

1

Reverse-Polish Notation

Pop 6 and 5 and push 5 × 6 = 30

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

30

4

5

1

Reverse-Polish Notation

Pop 30 and 4 and push 4 – 30 = –26

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

–26

5

1

Reverse-Polish Notation

Push 7 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

7

–26

5

1

Reverse-Polish Notation

Pop 7 and –26 and push –26 × 7 = –182

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

–182

5

1

Reverse-Polish Notation

Pop –182 and 5 and push –182 + 5 = –177

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

–177

1

Reverse-Polish Notation

Pop –177 and 1 and push 1 – (–177) = 178

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

178

Reverse-Polish Notation

Push 8 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

8

178

Reverse-Polish Notation

Push 1 onto the stack

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

9

8

178

Reverse-Polish Notation

Pop 9 and 8 and push 8 × 9 = 72

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

72

178

Reverse-Polish Notation

Pop 72 and 178 and push 178 + 72 = 250

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

250

Reverse-Polish Notation

Thus:

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

evaluates to the value on the top: 250

The equivalent in-fix notation is:

((1 – ((2 + 3) + ((4 – (5 × 6)) × 7))) + (8 × 9))

We reduce the parentheses using order-of-
operations:

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Reverse-Polish Notation

Incidentally,

1 – 2 + 3 + 4 – 5 × 6 × 7 + 8 × 9 = – 132

which has the reverse-Polish notation of

1 2 – 3 + 4 + 5 6 7 × × – 8 9 × +

For comparison, the calculated expression
was:

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

